Quantum computers are on the verge of becoming a commercially available reality. They represent a paradigm shift in computing, with a steep learning gradient. The creation of games is a way to ease the transition for beginners. We present a game similar to the Poker variant Texas hold ’em with the intention to serve as an engaging pedagogical tool to learn the basics rules of quantum computing. The concepts of quantum states, quantum operations and measurement can be learned in a playful manner. The difference to the classical variant is that the community cards are replaced by a quantum register that is “randomly” initialized, and the cards for each player are replaced by quantum gates, randomly drawn from a set of available gates. Each player can create a quantum circuit with their cards, with the aim to maximize the number of 1’s that are measured in the computational basis. The basic concepts of superposition, entanglement and quantum gates are employed. We provide a proof-of concept implementation using Qiskit (Aleksandrowicz et al. in An open-source framework for quantum computing, 2019). A comparison of the results for the created circuits using a simulator and IBM machines is conducted, showing that error rates on contemporary quantum computers are still very high. For the success of noisy intermediate scale quantum (NISQ) computers, improvements on the error rates and error mitigation techniques are necessary, even for simple circuits. We show that quantum error mitigation (QEM) techniques can be used to improve expectation values of observables on real quantum devices.

For more info